Name Solutions

EE 311

Final Exam

Spring 2012

May 1, 2012

Closed Text and Notes, No calculators

- 1) Be sure you have 15 pages and the additional pages of equations.
- 2) Write only on the question sheets. Show all your work. If you need more room for a particular problem, use the reverse side of the same page.
- 3) Write neatly, if your writing is illegible then print.
- 5) This exam is worth 150 points.

(5 pts) 1. Find the unit vector directed from the point (2, -5, -2) toward the point (-1, -5, 2) in rectangular coordinates.

$$\hat{R} = (-1, -5, 2)$$

$$\hat{R} = (-1 - 2)\hat{a}_{x} + (-5 - (-5))\hat{a}_{y} + (2 - (-2))\hat{a}_{z}$$

$$= -3\hat{a}_{x} + 4\hat{a}_{z}$$

$$R^{2} = \hat{R} \cdot \hat{R} = 9 + 16 = 25$$

$$\hat{a}_{R} = \frac{\hat{R}}{R} = \frac{-3\hat{a}_{x} + 4\hat{a}_{z}}{5}$$

$$= -\frac{3}{5}\hat{a}_{x} + \frac{4}{5}\hat{a}_{z}$$

(5 pts) 2. What is the intersection of the surfaces r = 1m and $\theta = \frac{\pi}{3}$?

circle

(12 pts) 3. There is a charge of 1 C at (0, 1m, 0) and at (0, -1m, 0) as shown. Find $\mathbf{E}(0, y, 0)$, the electric field intensity on the y-axis, for -1m < y < 1 m.

(10 pts) 4. A capacitor consists of two co-centric spheres as shown. The outer radius of the inner conductor is $r_A = 1m$, the inner radius of the outer conductor is 4m, and there are two air gaps and a dielectric from 2m < r < 3m. A voltage is applied such that a surface charge of $\rho_S = (\frac{2x10^{-9}}{\pi}) \frac{C}{m^2}$ appears on the outer surface of the inner conductor and a bound charge of $\rho_B = -(\frac{10^{-9}}{4\pi}) \frac{C}{m^2}$ on the inside surface, $r_B = 2m$, of the dielectric. Find the electric field 10^{-9} F

intensity, the electric flux density and the polarization for 1m < r < 4m. Note $\epsilon_o = \frac{10^{-9}}{36\pi} \frac{F}{m}$.

$$Q_{S} = P_{S} \, 4\pi \, \Gamma_{A}^{2} = \frac{2 \times 10^{-9} \, \text{c}}{\pi} \, 4\pi \, (\text{Im})^{2}$$

$$Q_{S} = 8 \times 10^{-9} \, \text{c}$$

$$D = \frac{8 \times 10^{-9} \, \text{c}}{4\pi \, \Gamma_{B}^{2}} \, A_{\Gamma} \quad \text{for} \quad \text{Im} \, \Delta \, \Gamma \, \Delta \, 4\pi$$

$$Q_{B} = P_{B} \, 4\pi \, \Gamma_{B}^{2} = -\left(\frac{10^{-9} \, \text{c}}{4\pi \, \text{m}^{2}}\right) \, 4\pi \, (2m)^{2}$$

$$= -4 \times 10^{-9} \, \text{c}$$

$$E = \frac{1}{\epsilon_0} \left(\frac{8 \times 10^9 \text{ c}}{4 \pi r^2} - \frac{4 \times 10^9 \text{ c}}{4 \pi r^2} \right) \hat{a_r} \qquad \lambda m \leq r \leq 3 m$$

$$\vec{E} = \left(\frac{36 \pi}{10^{-9}} \frac{m}{F} \right) \left(\frac{4 \times 10^{-9} \text{ c}}{4 \pi r^2} \right) \hat{a_r} = \frac{36}{r^2} \hat{a_r} \frac{V}{m}$$

Jor the
$$\vec{E} = \frac{\vec{D}}{\epsilon_0} = \frac{36\pi}{10^{-9}} \frac{8 \times 10^{-9} \text{ a}}{4\pi r^2} = \frac{72 \text{ a}}{r^2} \frac{\vec{a}}{\text{ m}}$$

So, $\vec{E} = \frac{72}{\Gamma^2} \hat{a}_r \frac{V}{m}$ for $1m \leq r \leq 2m$ and $3m \leq r \leq 4m$ $= \frac{36}{\Gamma^2} \hat{a}_r \frac{V}{m}$ for $2m \leq r \leq 3m$

(10 pts) 5. Using field concepts, find the value of the capacitance of the structure shown below. The plates are parallel and of area $36\pi \, \text{m}^2$, Between the plates the value of the relative dielectric constants are $\varepsilon_r = 3$ for 0 < x < 1m, $\varepsilon_r = 2$ for 1m < x < 2m, and $\varepsilon_r = 6$ for 2m < x < 3m. Ignore fringing

(10 pts) 6. A tightly wound solenoid consists of 1000 turns, is 0.1 m long and has a radius of 0.01m. Around this solenoid is another tightly wound solenoid of 400 turns, length of 0.04m and radius

0.02m. What is the mutual inductance of these solenoids?

$$Area = \pi r^{2} = \pi (o.om)^{2}$$

$$= 10^{9} \pi m^{2}$$

$$Area = \pi r^{2} = \pi (o.om)^{2}$$

$$= 10^{9} \pi m^{2}$$

$$Area = \pi r^{2} = \pi (o.om)^{2}$$

$$= 10^{9} \pi m^{2}$$

$$Area = \pi r^{2} = \pi (o.om)^{2}$$

$$= 10^{9} \pi m^{2}$$

$$Area = \pi r^{2} = \pi (o.om)^{2}$$

$$= 10^{9} \pi m^{2}$$

$$Area = \pi r^{2} = \pi (o.om)^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi (o.om)^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

$$Area = \pi r^{2} = \pi r^{2} = \pi r^{2}$$

= (20104I) (10471) = NOTT

X=NW=400 POTI

$$M = \frac{\lambda}{I} = \frac{400 \, p_0 \pi I}{I}$$

= 400 No JT

magnetic flux density, B	$T = \frac{Wb}{m^2}$
Magnetic field intensity, H	AM
Electric Field Intensity, E	V m
Electric Flux Density, D	$\frac{C}{m^2}$
Electric flux, Ψ	C
Magnetic flux, Ψ	Wb

(5 pts) 8. For the region of space r < 1m, the total charge in this region is decreasing at the rate of $4\pi \frac{\mu C}{s}$. What is the current density on the surface r = 1m?

If
$$Q = charge$$
 in Side region relimination $\frac{dQ}{dt} = 4JJ \frac{DC}{S} = correct$ flowing in \hat{a}_r direction through the surface $r = lm$

$$J = \frac{dQ}{dt} = \frac{4JJ \times 10^{-6} \text{ G}}{4JJ \times 10^{-6} \text{ G}} = \frac{-6 \text{ A}}{m^2}$$

$$\vec{J} = \frac{16 \hat{a}_r}{4JJ} = \frac{A}{m^2}$$

(10 pts) 9. A sphere of radius 1m has a charge on it of $\frac{10^{-9}}{3}$ C. If $V(\infty) = 10 \text{ V}$, find V for $0 < r < \infty$. Note

$$\varepsilon_o = \frac{10^{-9}}{36\pi} \frac{F}{m}$$

$$\frac{\vec{E}}{\vec{E}} = 0$$
for $r < 1m$

$$= \frac{10^{-9}}{3} = \frac{10^{-9}}{4\pi \epsilon_{o} r^{2}} = \frac{3}{12\pi \left(\frac{10^{-9}}{36\pi}\right) r^{2}} = \frac{3}{r^{2}} \quad \text{for } r > 1m$$

for
$$r > 1m$$

 $V(r) - V(10m) = -\int_{0}^{r} \frac{3}{r^2} dr = \frac{3}{r} \Big|_{\infty}^{r} = \frac{3}{r}$

$$V(r) = \left[\frac{3}{r} + 10\right]V$$
 for $r > 1m$
for $r < 1m$ $V(r) = V(im) = \left[\frac{3}{1} + 10\right]V$

(9 pts) 10. There is a sheet current density of $\mathbf{K} = 2 \hat{\mathbf{a}}_{\mathbf{z}} \frac{\mathbf{A}}{\mathbf{m}}$ flowing on the x = -1 m and x = 1 m planes. Find

the magnetic field intensity everywhere.

First find H due to the x=-Im current plans

$$g\vec{H}.\vec{d}l = H_yw + H_yw = 2\frac{A}{m}w$$

$$H_y = 1\frac{A}{m}$$

$$\vec{H} = 1 \hat{a} y \hat{n}$$
 $\chi > -1 m$
 $-1 \hat{a} y \hat{n}$ $\chi < -1 m$

Similarly for the x= 1m plans

$$\vec{H} = lay \frac{A}{m}$$
 $\chi > lm$
 $-lay \frac{A}{m}$ $\chi \leq lm$

Using superposition, the H field everywhere due to the two current planes

$$\ddot{H} = 2 \hat{a}_y + \frac{A}{n}$$

$$- 1 \frac{A}{n} \times \frac{1}{n}$$

$$- 2 \hat{a}_y + \frac{A}{n}$$

$$\chi \times - 1 \frac{1}{n}$$

(10 npts) 11. Find the force on the 1m x 1m loop shown. The loop and infinite wire are in the same plane.

$$F_{1} = \int I dl \times B$$

$$= \int (5A) d \lambda \hat{a}_{2} \times \frac{2 \times 10^{-6}}{6} \hat{a}_{p}$$

$$= \int (5A) \frac{2 \times 10^{-6}}{1} T d \lambda (-\hat{a}_{p})$$

$$= -10^{-5} \hat{a}_{p} N$$

$$F_{3} = \int (5A) dZ dZ \times \frac{2\times10^{-6}}{9} T dZ$$

$$= \int (5A) \frac{2\times10^{-6}}{2} T dZ dQ$$

$$= \int (5A) \frac{2\times10^{-6}}{2} T dZ dQ$$

$$= \int 5\times10^{-6} A N$$

(12 pts) 12. The two-resistor circuit is in the field of magnitude $B=20t\frac{Wb}{m^2}$ that is out of the page. Determine i_1 and i_2 .

$$i_1(100) = -(-20\frac{V}{m^2})(2m^2) = 40$$

 $i_1 = 4A$

clockwise around loop 2

$$\oint E \cdot dl = -\left(\frac{dv}{dt}\right)$$

$$i_2(5.D) = -\left(-20\frac{V}{m^2}\right)(1m^2) = 20V$$

$$i_2 = 4A$$

(18 pts) 13. The magetic field intensity is $H=10\frac{A}{m}\cos(\pi 10^4 t - \pi 10^{-4} x)\hat{a}_z$ in a nonmagnetic dielectric.

Note
$$\frac{1}{\sqrt{\mu_o \epsilon_o}} = 3x10^8 \frac{m}{s}$$
 and $\sqrt{\frac{\mu_o}{\epsilon_o}} = 377 \,\Omega$

$$\omega = 2\pi f = \pi 10^9$$

(4 pts) B) What is the wavelength?

$$\beta = \frac{2\pi}{\lambda} = \pi 10^{-4}$$

$$\lambda = 2 \times 10^{4} \text{ m}$$

(4 pts) C) What is the velocity

$$U = \frac{\omega}{\beta} = \frac{\pi 10^{4}}{17 10^{-4}} = 10^{8} \frac{m}{5}$$

$$\tilde{U} = 10^{8} \hat{a}_{x} \frac{m}{5}$$

(6 pts) D) Find the electric field intensity.

(6 pts) D) Find the electric field intensity.

$$U = \frac{1}{\sqrt{\nu_0 E'}} = \frac{1}{\sqrt{E_r}} \frac{1}{\sqrt{\nu_0 E_0}} = \frac{3 \times 10^8 \text{ s}}{\sqrt{E_r}} = 1 \times 10^8 \text{ s}$$

$$E_r = 9 \qquad \gamma = \sqrt{\frac{\nu_0}{E'}} = \frac{1}{\sqrt{E_r}} \sqrt{\frac{\nu_0}{E_0}} = \frac{377 \cdot \Omega}{3} = 125.7 \cdot \Omega$$

$$\vec{E} = + (10 \frac{A}{m})(125.7 \cdot \Omega) \cos(\pi 10^4 t - \pi 10^4 x) \hat{a}_y$$

$$\vec{E} = + 1257 \frac{V}{m} \cos(\pi 10^4 t - \pi 10^4 x) \hat{a}_y$$

(13 pts) 14. The z = 0 plane is the boundary between free space, z < 0, and a lossless, nonmagnetic dielectric for z > 0. The velocity of an EM wave in the dielectric is $1.5 \times 10^8 \frac{\text{m}}{\text{s}}$

Note
$$\frac{1}{\sqrt{\mu_o \epsilon_o}} = 3x10^8 \frac{m}{s}$$
 and $\sqrt{\frac{\mu_o}{\epsilon_o}} = 377 \Omega$

(6 pts) A) For a uniform plane wave incident from the free space, at normal incidence, and with a wavelength of 5 m, what would be the wavelength of the transmitted wave?

frep
$$f = f(5m) = C = 3 \times 10^8 \text{ m}$$

 $f = 6 \times 10^7 \text{ s}^{-1}$

in the
$$f = (6 \times 10^7 \text{ s}) \lambda = 1.5 \times 10^8 \frac{\text{m}}{\text{s}}$$

$$\lambda = \frac{1.5}{6} \times 10 \text{ m} = 2.5 \text{ m}$$

Forst find
$$\epsilon_{r_2}$$
 1.5 ×10 $\frac{8}{5} = \frac{1}{\sqrt{\nu_0 \epsilon_{r_2} \epsilon_0}} = \frac{3 \times 10^{\frac{8}{5}}}{\sqrt{\epsilon_{r_2} \epsilon_0}}$

So
$$\epsilon_{r_2} = 4$$

$$\eta_2 = \sqrt{\frac{\nu_0}{\epsilon_{r_2} \epsilon_0}} = \frac{1}{2} (377.n) = \frac{1}{2} \eta_0$$

$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_1 + \eta_1} = \frac{\frac{1}{2} \eta_0 - \eta_0}{\frac{1}{2} \eta_0 + \eta_0} = \frac{(\frac{1}{2})}{(\frac{3}{2})}$$

$$\Gamma = -\frac{1}{3}$$

(10 pts) 15. The region of space for z < 0 is filled with a lossless nonmagnetic dielectric. (5 pts) (A) If there is a perfect conductor at z = 0, what is the standing wave ratio for z < 0?

(5 pts) (B) If the region for z > 0 is also a lossless nonmagnetic dielectric, that has the same dielectric constant as the dielectric in region z < 0, what is the standing wave ratio for z < 0?

(5 pts) 16. In a certain material the electric field is given by

$$E(z,t) = 10e^{-0.01z} \cos[(2 \times 10^8 \text{ s}^{-1})t - (2\text{m}^{-1})z]a_x \frac{V}{m}$$
. What is the skin depth?

$$+0.012 = +0.018 = 1$$

 $S = 8 = \frac{1}{0.01} = 100 \text{ m}$